ca88手机版登录网页然而数二考察的知识点也比较少

当前位置:ca88手机版登录网页 > ca88手机版登录网页 > ca88手机版登录网页然而数二考察的知识点也比较少
作者: ca88手机版登录网页|来源: http://www.yanglongji.com|栏目:ca88手机版登录网页

文章关键词:ca88手机版登录网页,有界型性

  其实考研数学二的考察内容和考研数学一大体上没有太大的区别,只不过在出题难度上相对于考研数学一来说,考研数学二确实要简单一点。

  考研数学二与考研数学一相比,其主要的出题区别是在试卷内容和考试科目上。就试卷内容来说,考研数学一主要是考:线性代数、高等数学和概率与数据统计;考研数学二主要考线性代数和高等数学,而概率与数据统计是不靠的。

  在考试科目上的区别,在线性代数中,考研数学一多了向量空间的内容,而考研数学二则没有;在高等数学上,考研数学一的考察范围非常的广泛,但是考研数学二却没有向量代数、空间解析几何、三重积分、曲线积分、曲面积分以及所有与物理相关的应用。

  (1)高等数学(分值比例占总分78%)同济六版高等数学,除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。

  (2)线性代数(分值比例占总分22%)同济五版线章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。

  函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形;初等函数函数关系的建立数列极限与函数极限的定义及其性质;

  函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念;函数间断点的类型 初等函数的连续性;闭区间上连续函数的性质。ca88手机版登录网页

  (5)、 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

  (7)、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

  (8)、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

  (9)、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

  (10)、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

  (1)、 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

  (2)、 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  (4)、 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  (5)、 理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理。

  (7)、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  (8)、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f(x)=0时,f(x)的图形是凹的;当f(x)=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

  原函数和不定积分的概念;不定积分的基本性质 基本积分公式定积分的概念和基本性质;定积分中值定理积分上限的函数及其导数;牛顿-莱布尼茨(Newton-Leibniz)公式;

  不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用

  (2)、 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。

  (6)、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。

  (2)、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。

  (3)、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。

  (4)、 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.

  (5)、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).

  常微分方程的基本概念;变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的简单应用。

  (2)、掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程。

  (5)、 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线)、 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线)、会用微分方程解决一些简单的应用问题。

  矩阵的概念;矩阵的线性运算;矩阵的乘法;方阵的幂;方阵乘积的行列式;矩阵的转置;逆矩阵的概念和性质;矩阵可逆的充分必要条件;伴随矩阵矩阵的初等变换;初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算。

  (1)、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.

  (2)、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

  (3)、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

  (4)、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.

  向量的概念;向量的线性组合和线性;表示向量组的线性相关与线性无关;向量组的极大线性无关组等价向量组;向量组的秩;向量组的秩与矩阵的秩之间的关系;向量的内积线性;无关向量组的正交规范化方法

  (1)、解n维向量、向量的线性组合与线)、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.

  (3)、了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线)、了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系

  (5)、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

  线性方程组的克莱姆(Cramer)法则;齐次线性方程组有非零解的充分必要条件;非齐次线性方程组有解的充分必要条件;线性方程组解的性质和解的结构;齐次线性方程组的基础解系和通解;非齐次线)、会用克莱姆法则。

  (2)、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。

  (3)、理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法。

  矩阵的特征值和特征向量的概念;性质相似矩阵的概念及性质;矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值;特征向量及其相似对角矩阵。

  (1)、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。

  (2)、理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵。

  二次型及其矩阵;表示合同变换与合同矩阵二次型的秩惯性定理;二次型的标准形和规范形;用正交变换和配方法化二次型为标准形;二次型及其矩阵的正定性。

  (1)、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念。

  (2)、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。

  高等数学:同济六版高等数学中除了第七章微分方程考带*的伯努力方程外,其余带*号的都不考;所有”近似“的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。

  线性代数:数学二用的教材是同济五版线章:行列式、矩阵及其运算,矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。

  思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(部分专业通过全国联考的方式进行命题)。硕士研究生招生方式分为全日制和非全日制两种。培养模式分为学术型硕士和专业型硕士研究生两种。

  数学:不变。不变对于我们来说就是最好的消息,可以按照正常的规划继续复习。

  总体来说,今年英语并没有重大变化。英语新大纲加入听力或者题型有变化的传言均被事实打破,大家放心备考 。

  政治:横向比较数学、英语,政治变动一定是最大的,近60处内容发生变动的,其中属毛中特变动较大。纵向比较历年大纲,政治变动不是最大的(实质性变动只有十几处而已,其他的只是表述变化,内容无实质变化),详细变动表这里发不了,只能简单统计一下

  2020考研大纲数学、英语、政治的变动内容就是这么多,其他专业科目也有一定的变化,但整体都不大,比如说教育学大纲没有什么变化、临床医学综合能力(中医)考试大纲仅仅删除了《中药学》活血化瘀药中穿山甲这一味中药,这些同学们可以在网络中随便一搜就可以查到。

  很多同学在大纲出来后急急忙忙的购买大纲书籍,一度卖断货了。哎,只能说这些同学又掉坑了。不仅我自己觉得,我转头问问旁边几位已经上岸的实习生,有考407的,也有考420分的,但他们都没有看过相关的课程,更没有看过大纲全文。大家去看看网上的经验贴,问问身边考上的学长学姐,估计也没人说自己是因为研究大纲考上的,或者因为这个多考了多少分吧。所以希望今年备考的同学能够尽早明白这个道理(考研教辅这个市场非常成熟了,大家完全可以借力捡漏,不需要自己做)。

  工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。

  除此之外,还有一些工科类要求的数学试卷难易程度是由招生单位决定的,比如材料科学与工程、化学工程与技术、地质资料与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科,对数学要求高的二级学科则选取数学一,要求较低的则选取数学二。

  首先,我们大家都知道在数一中,高等数学、线性代数、概率与数理统计的比例为56%、22%、22%;数二不考察概率与数理统计,高等数学和线%;数三中三者的比例和数一的相同,也是56%、22%、22%。而对于数一、数二、数三而言,每一门学科的重点也是不同的。下面,我将具体来和大家分析一下这其中的不同点,并且告诉各位考生在复习过程中,应该侧重于什么。

  我们先来看一下高等数学。高等数学对于数一、数二、数三而言,区别是非常大,可以说在三门学科中,区别是最大的。我们先来看一下数一,对于数一的考生而言,复习的重点是下册,也就是说考试的重点是多元函数微分学,多元函数积分学,微分方程、级数,可以很负责的告诉大家,多元函数微分学,多元函数积分学几乎每年都会各出一道大题。那么,我想问一下大家,大家觉得是下册难啊,还是上册难?我相信,这个时候几乎所有的考生都会说,下册难。但是,我想告诉大家的是,事实上,上册是比较难的。下册的知识点往往是起点高,落点低。虽然说,每一道题目考查的都比较复杂,但是解题的方法和思路都是比较固定的,而且也是比较好掌握的,只要我们掌握了其中的思想,要想拿到这部分的分数还是没有什么压力的。对于数二的同学而言,与数一恰恰是相反的,数二同学的考试重点是上册,换句说话,对于数二的同学而言,考试的重点是极限、一元函数微分学、二元函数积分学。并且,数二的题目往往具有很高的灵活性,考察的也比较细致。这是因为,数二在高等数学方面的比例达到78%,也就是117分,然而数二考察的知识点也比较少,所以这就注定了数二的题目具有很高的灵活性。另一方面,高等数学的上册的综合性还要远远的高于下册。对于数三的同学而言,这一点和数一的区别并不是很大。但是,数三的题目更加注重应用。这是因为,数三的考生大都是经济类和管理类的考生。所以说,数三比较注重应用,这一点需要引起数三同学的重视。

  其次,我们来看一下线性代数。对于线性代数而言,数一、数二、数三的差别并不是很大,所以在这里,我也就不区分了。在线性代数中,线性方程组和矩阵的相似是考察的重点,并且大家还要注意线性方程组和向量之间的相结合,矩阵的相似和二次型的相结合。每年线性代数要考察两道大题,而往往这两道大题都是这两个知识点各考察一道。

  最后,我们来看一下概率与数理统计。对于概率和数理统计而言,数一、数二、数三之间的区别也是几乎没有,所以在这里,我也就不区分了。同样,我也给大家点出,考试的重难点,希望可以帮助大家。多维随机变量的边缘分布和条件分布、随机变量函数、数字特征、参数估计这些都是考试的重点,其中的重点优先级单调递减。尤其是多维随机变量的边缘分布和条件分布、随机变量函数是非常重要的。对于数字特征,单独出大题的可能性比较低,但是往往会和其他的知识点结合在一起作为一道大题的第一问。最后我们来看一下参数估计,这个知识点,我希望数一的同学多注意一下,数一在这一板块考察大题的可能性还是比较高的。

网友评论

我的2016年度评论盘点
还没有评论,快来抢沙发吧!